Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications.

نویسندگان

  • Christoph Krafft
  • Benjamin Dietzek
  • Michael Schmitt
  • Jürgen Popp
چکیده

A tutorial article is presented for the use of linear and nonlinear Raman microspectroscopies in biomedical diagnostics. Coherent anti-Stokes Raman scattering (CARS) is the most frequently applied nonlinear variant of Raman spectroscopy. The basic concepts of Raman and CARS are introduced first, and subsequent biomedical applications of Raman and CARS are described. Raman microspectroscopy is applied to both in-vivo and in-vitro tissue diagnostics, and the characterization and identification of individual mammalian cells. These applications benefit from the fact that Raman spectra provide specific information on the chemical composition and molecular structure in a label-free and nondestructive manner. Combining the chemical specificity of Raman spectroscopy with the spatial resolution of an optical microscope allows recording hyperspectral images with molecular contrast. We also elaborate on interfacing Raman spectroscopic tools with other technologies such as optical tweezing, microfluidics and fiber optic probes. Thereby, we aim at presenting a guide into one exciting branch of modern biophotonics research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications

Coherent anti-Stokes Raman scattering (CARS) microscopy permits vibrational imaging with high-sensitivity, high speed, and three-dimensional spatial resolution. We review recent advances in CARS microscopy, including experimental design, theoretical understanding of contrast mechanisms, and applications to chemical and biological systems. We also review the development of multiplex CARS microsp...

متن کامل

Chemical imaging and microspectroscopy with spectral focusing coherent anti-Stokes Raman scattering.

We demonstrate two different coherent anti-Stokes Raman scattering (CARS) microscopy and microspectroscopy methods based on the spectral focusing mechanism. The first method uses strongly chirped broadband pulses from a single Ti:sapphire laser and generates CARS signals at the fingerprint region. Fast modulation of the time delay between the pump and Stokes laser pulses coupled with lock-in si...

متن کامل

Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles

We report a theoretical description and experimental implementation of multiplex coherent anti-Stokes Raman scattering (M-CARS) microspectroscopy using a picosecond pump beam and a femtosecond Stokes beam. The effect of the chirp in the Stokes pulse on a M-CARS spectrum is studied. Polarization-sensitive detection is utilized for suppression of the nonresonant background and for selective detec...

متن کامل

Interferometric Fourier transform Coherent anti-Stokes Raman Scattering.

We present an interferometric time-domain Fourier transform implementation of coherent anti-Stokes Raman scattering (CARS). Based on a single femtosecond laser source, the method provides a straight-forward scheme for obtaining high resolution CARS spectra. We give a theoretical description of the method, and demonstrate good agreement between simulation and experimental CARS spectra. We also d...

متن کامل

Triple-resonance coherent anti-stokes Raman scattering microspectroscopy.

Fluorescence-free microscopy: A new nonlinear optical microspectroscopy technique, femtosecond (fs) triple-resonance coherent anti-Stokes Raman scattering, in which the amplitude and phase of input fs laser pulses are optimally shaped to be in triple resonance with the molecular electronic and vibrational transitions, generates a coherent nonlinear signal beam at a new color with a highest poss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 17 4  شماره 

صفحات  -

تاریخ انتشار 2012